射线图像上两个区域之间的黑度差定义为影像的对比度,在射线影像上的对比度指的是影像黑度与背景的黑度之差。对窄束单色射线的情况,可以根据射线衰减规律推导。在实际的检测时一般都是宽束射线,因此必须考虑到散射线的影响,因此也可以推导出散射比。射线检测理论的基本公式是指导射线检测技术的基本公式,对实际检测过程中的缺陷,严格的说不能简单的应用公式进行计算,而是应考虑缺陷对射线的衰减特性。也就是缺陷引起的射线衰减远远小于同样小的被检测物本身引起的射线衰减,某个细节缺陷影像的射线对比度受到细节本身的性质和尺寸及射线检测因素、被透照物体本身的性质和尺寸等一系列因素的影响。对于一个特定的缺陷,要得到高的射线对比度就要选用可能较低能量的射线透照,来提高线衰减系数。选择适宜的透照布置使得该缺陷在透照方向具有较大的厚度差,采取措施减少散射线的强度。

工业常用的探测器有三种,闪烁体光电倍增管和闪烁体光电二级管及气体电离探测器。采集信号的方法则分为光子计数和电流积分两种,光子计数适合于射线强度较低的场合,电流积分法则适合于射线强度高的场合。因为射线强度增加时,光子计数法不能区分射线光子产生的单个脉冲。闪烁体光电倍增管探测器即可用光子计数也可以采用电流积分,闪烁体光电二极管和气体探测器由于信号弱只能采用电流积分。闪烁体光电倍增管探测器的工作原理是射线使闪烁体发出可见光,光电倍增管的光阴极将可见光转变为电子,电子被加速打到带正电的倍增电极上释放出更多的电子,经过一系列的倍增电极得到低背景噪声下的高电信号。闪烁光体二极管探测器的工作原理与闪烁体光电倍增管探测器相似,只是用光电二极管代替了光电倍增管的光电极,将可见光转变为电流电压转换器将电流信号放大并转换成电压信号。气体电离探测器是射线入射到充有高压气体的电离室内使气体原子电离,其优点是可以做到很高的排列密度,探测器之间的一致性好。

射线既有光所具有的波粒二象性本质特性,同时又与可见光有很大的区别。X射线沿直线传播,射线粒子本身不带电量,不受电场和电磁作用的影响。射线与可见光一样在真空中以光速传播,并沿直线方向前进。X射线与物质相互作用时,它可以穿透物体,能量的衰减与物体的结构和厚度有关。X射线强穿透能力,射线能够透过可见光无法透过的物质,同时被物质吸收和散射,从而引起射线能量的衰减。射线的穿透能量与其波长以及被穿透材料的原子序数和密度有关,射线能量越大波长越短,硬度越高穿透能量越大。而被透照材料的原子序数越大,密度越大越难穿透。利用射线穿透物体,根据物体对射线的吸收能力与穿透能力,通过探测器、图像增强、图像采集等方法,观察物体内部的结构与状态。X射线的电离性质能排斥原子层中的电子,使气体电离也能影响液体或固体的电性质。射线的这一特性在通过空气时,也可使空气分解为正负离子成为导电体,空气的电离程度与吸收的射线剂量成正比。

-/gbabaag/-
http://lijunsheng076.cn.b2b168.com